The Robust Heliotropic Servo Design for Concentrated Photovoltaic Systems (HCPVS)

Jiba Nath Dahal, Brandon Stark, Brennan Stevenson, Kevin Stow-Parker, Blair Macleod, with YangQuan Chen
UC Solar and Mechatronics, Embedded Systems and Automation (MESA) Lab
University of California Merced, Merced, CA, USA

Simulation

A simulation of the Robust Heliotropic Servo Design for Concentrated Photovoltaic Systems was created using Advanced Motion Controls Click & Move software. The simulation tracks the "sun", by moving the rod along the inside of the dish, so as to maintain 2.5 of the hemisphere's radius and a parallel orientation to the sun's rays. This is accomplished by using two separate servos to adjust the azimuth and elevation of the rod, controlled by AX1 and AX2 respectively. The equivalent ratio of both these axes to real coordinates is 10,000 counts to one revolution, and one degree of movement. The actual elevation and azimuth are compared with the corresponding orientation of the target via trend graphs, which show the transient response of the system in terms of system input and output.

Prototype Construction

- 16"x16" Aluminum cover with a 12" diameter hole cut in the center.
- 12" diameter reflective bowl.
- 10" height base constructed of pine.
- Arduino Uno-R3
- 2- 5v DC Motors
- Flexible gear track and gears
- Not Pictured
 - Rotating base for 14" diameter track.
 - Rod and gear system.
 - Photodiodes

References

2. "Getting the Best Solar Panel Efficiency and the Factors That Affect It." Www.pursolarsite.com

Abstract

The Robust Heliotropic Servo Design for Concentrated Photovoltaic Systems, or HCPVS, is an advanced solar energy collector. The HCPVS implements a control system to move a solar cell to the focus point of the sun's concentrated rays. This enables a less expensive, lower footprint, lightweight, and highly efficient solar energy collection system compared to traditional solar collection systems. The reduction in area utilized to generate power enables green energy to be collected on a smaller scale suitable for modular application in traditional urban landscapes less isolated from direct human use. Lower volumes of photovoltaic material will significantly reduce the waste materials from cell replacement over a standard lifespan. Implementation of this device will advance solar technologies to be more efficient and robust in applications.

3D Model of the System

The latest model of the system. Each component is being built in small sections to be 3D printed for testing and calibration. Here you can see a motor that rotates the photovoltaic rod around the center axis. The outer circle will also rotate although this is not shown here.

System Model

This is the system model of the HCPVS encoder feedback combined with the photodiodes allows the Arduino to calculate the position of the rod move it accurately to be parallel with the sun.

Solar Panel Efficiency

- Solar Panel efficiency depends on [1]:
 - Manufacturers of the solar panels
 - Panel orientation
 - Roof and panel pitch
 - Temperature
 - Shade
 - Azimuth and other variables
- According to Pursolar and Electrical resource, most of the solar panels have an efficiency of 14-18%[2]